Advertisement
UK markets close in 1 hour 20 minutes
  • FTSE 100

    8,132.13
    +53.27 (+0.66%)
     
  • FTSE 250

    19,825.09
    +223.11 (+1.14%)
     
  • AIM

    755.56
    +2.44 (+0.32%)
     
  • GBP/EUR

    1.1673
    +0.0016 (+0.14%)
     
  • GBP/USD

    1.2501
    -0.0010 (-0.08%)
     
  • Bitcoin GBP

    51,470.85
    +667.00 (+1.31%)
     
  • CMC Crypto 200

    1,338.07
    -58.47 (-4.19%)
     
  • S&P 500

    5,103.09
    +54.67 (+1.08%)
     
  • DOW

    38,289.32
    +203.52 (+0.53%)
     
  • CRUDE OIL

    83.95
    +0.38 (+0.45%)
     
  • GOLD FUTURES

    2,353.00
    +10.50 (+0.45%)
     
  • NIKKEI 225

    37,934.76
    +306.28 (+0.81%)
     
  • HANG SENG

    17,651.15
    +366.61 (+2.12%)
     
  • DAX

    18,158.38
    +241.10 (+1.35%)
     
  • CAC 40

    8,094.78
    +78.13 (+0.97%)
     

Vectorized Antibodies for In Vivo Expression Industry - Featuring Adverum Biotechnologies, Homology Medicines and BioNTech Among Others

Dublin, July 13, 2021 (GLOBE NEWSWIRE) -- The "Vectorized Antibodies for In Vivo Expression by DNA and mRNA: A Landscape Analysis Of Stakeholders, Technologies, Targets, Business and Financing from an Industry Perspective" report has been added to ResearchAndMarkets.com's offering.

This report provides you with a landscape description and analysis of direct in vivo delivery of nucleic acid-encoded antibodies employing DNA and mRNA platform technologies from an industry perspective as of July 2021. In vivo gene-encoded antibody delivery is an elegant approach to address many of the limitations of conventional therapeutic antibodies. The three main approaches for antibody vectorization are:

  • Adenoassociated virus (AAV) vector for delivery of DNA: AAV DNA;

  • Synthetic plasmid DNA utilizing an electroporation device to enhance transfection efficiency after IM delivery: plasmid DNA;

  • mRNA formulated in lipid nanoparticles (LNP): LNP mRNA.

The report brings you up-to-date with information about and analysis of

  • Approaches of in vivo expression of therapeutic antibodies;

  • Stakeholders in the field: technology and major pharmaceutical companies and investors;

  • Gene therapy technologies for antibody vectorization: DNA, mRNA;

  • Delivery technologies: adenoassociated virus (AAV) vector; electroporation; lipid nanoparticles (LNPs)

  • Targets and therapeutic indications selected for development of vectorized antibodies;

  • Preclinical and clinical experience with selected vectorized antibodies;

  • Financing situation of technology companies and key investors in the field

  • Partnering deals with financial terms;

  • Business strategy: indications, development path, technology partnering, investment case;

  • Major pharmaceutical companies: in-house technologies, R&D, collaborations.

ADVERTISEMENT

Passive immunotherapy with conventional recombinant monoclonal antibodies has become a clinically and commercially extremely successful treatment modality. Breakthroughs in recombinant antibody technologies have resulted in the regulatory approval and commercialization of over 100 monoclonal antibodies (mAbs) to treat a variety of diseases. Sales of recombinant therapeutic antibodies in the year 2020 exceeded US$ 184 bln (+11% vs previous year).

However, there exist a number of limitations and challenges for passive immunotherapy. Manufacturing of recombinant antibodies requires large volumes, costly production and complex protein characterization. Delivery challenges must also be overcome as in vivo administration of mAb biologics often requires high doses (grams of mAb) to achieve therapeutic efficacy, frequently at a high cost. Bioprocess manufacturing and purification can be lengthy and costly. mAbs requiring higher doses need to be administered through slow intravenous (IV) infusions to limit infusion reactions. IV delivery frequently requires hours of clinical monitoring and may involve post-infusion monitoring for allergic or anaphylactic reactions, further increasing the medical personnel required and costs of administration. Subcutaneous (SC) delivery has advantages for lower dose antibody delivery. However, SC delivery is associated with pain related to injection volume and injection site reactions, and absorption is slow due to reliance on the lymphatic system for biodistribution.

Another limitation of recombinant antibodies is their relatively short half leading to the need for repeated administration in case of chronic therapy which can be inconvenient for local administration into the eye (e.g. intravitreal). The blood-brain barrier (BBB) is a special concern for recombinant antibody therapy. The BBB prevents antibody entry to the central nervous system (CNS). Furthermore, antibodies do not enter the intracellular proteome. Systemically administered recombinant antibodies also have a potential for unspecific or toxic off-target effects.

Antibody vectorization intends to overcome such limitations of conventional passive immunotherapy. Each of the three different approaches (AAV DNA, plasmid DNA and mRNA) for in vivo expression of antibodies has its specific profile of advantages and disadvantages.

This report evaluates the industry landscape of antibody vectorization with optimized technologies for direct in vivo delivery of synthetic nucleic acid-encoded antibodies. The report is based on the identification and description of 26 companies with activities in the field of in vivo expressed therapeutic antibodies

For each vectorized antibody technology company, a profile has been elaborated providing information about the company background/history, the financial situation, relevant technology, partnering deals and target & pipeline overview. Short profiles of the major pharmaceutical and antibody technology companies are combined in a separate paragraph. The company profiles are preceded by a chapter of stakeholder analysis.

The analysis of the three major technologies for antibody vectorization (AAV DNA, plasmid DNA and mRNA) is followed by profiles of 14 technologies in more detail (Chapter "Profiles of Vectorized Antibody Technologies").

Eventually, this report has profiled 15 product candidates for in vivo expression of antibodies in preclinical and clinical stages of R&D. The descriptions can be found in the chapter "Profiles of Vectorized Antibody Product Candidates" in alphabetical order by the drug code or generic name, separately for each of the three main technologies.

All information in the three chapters of Company Profiles, Technology Profiles and Drug Candidate Profiles are fully referenced with 46 scientific references, in many cases with hyperlinks leading to the source of information (abstracts, Posters, papers). Non-scientific references, such as press releases, annual reports or company presentations, are disclosed within the text with an embedded hyperlink leading to the online source of information.

Details about R&D strategy, collaboration and licensing agreements, financing rounds & sources are described in the company profiles.

What will you find in the report?

  • Profiles of antibody vectorization technology companies active in the field;

  • Description of major pharma's/biotech's role in the field (in-house R&D, partnering and investing);

  • Comprehensive description and analysis of emerging vectorized antibodies;

  • Pharmacologic profiles of selected vectorized antibodies;

  • Characterization, profiling and state of antibody vectorization technologies;

  • Target and indication selection for each antibody vectorization technology;

  • Description and analysis of financing rounds (capital raised, investors);

  • Economic terms of collaboration and licensing deals;

  • Sources of financing.

Who will benefit from the report?

  • Venture capital, private equity and investment managers;

  • Managers of Big Pharma venture capital firms;

  • Financial analysts;

  • Business development and licensing (BDL) specialists;

  • CEO, COO and managing directors;

  • Corporate strategy analysts and managers;

  • Chief Technology Officer;

  • R&D Portfolio, Technology and Strategy Management;

  • Clinical and preclinical development specialists.

Key Topics Covered:

1 Executive Summary

2 Introduction & Overview

3 Stakeholder Analysis
3.1 Overview
3.2 Vectorized Antibody Technology Companies
3.3 Pharma/Biotech Companies Partnered with Vectorized Antibody Technology Companies

4 Profiles of Stakeholders in Vectorized Antibody Technologies
4.1 Viral Vector DNA Companies
4.1.1 4D Molecular Therapeutics (4DMT)
4.1.2 Adverum Biotechnologies
4.1.3 Homology Medicines
4.1.4 MeiraGTx
4.1.5 REGENXBIO
4.1.6 University of Pennsylvania (U'Penn), Wilson Gene Therapy Program (GTP)
4.1.7 VectorY
4.1.8 Voyager Therapeutics
4.1.9 Vybion
4.2 Plasmid DNA Companies
4.2.1 Eyevensys
4.2.2 Generation Bio
4.2.3 Inovio Pharmaceuticals
4.2.4 SmartPharm Therapeutics & Sorrento Therapeutics
4.3 mRNA Companies
4.3.1 BioNTech
4.3.2 CureVac
4.3.3 Ethris
4.3.4 Kernal Biologics
4.3.5 Moderna Therapeutics
4.4 Pharma / Biotech Partner Companies
4.4.1 AbbVie
4.4.2 AstraZeneca
4.4.3 Genmab
4.4.4 GlaxoSmithKline
4.4.5 Merck
4.4.6 Neurimmune
4.4.7 Regeneron Pharmaceuticals
4.4.8 Vir Biotechnology

5 Analysis of Vectorized Antibody Technologies
5.1 Viral Vector DNA Technologies for In Vivo Expression of Antibodies
5.2 Plasmid DNA Technologies for In Vivo Expression of Antibodies
5.3 mRNA Technologies for In Vivo Expression of Antibodies

6 Profiles of Vectorized Antibody Technologies
6.1 Viral Vector DNA Technologies for In Vivo Expression of Antibodies
6.1.1 Therapeutic Vector Evolution by 4D Molecular Therapeutics (4DMT)
6.1.2 Engineered AAV Technology by Adverum Biotechnologies
6.1.3 GTx-mAbs Platform by Homology Medicines
6.1.4 AAV Technology for Antibody Expression in Vivo by MeiraGTx
6.1.5 NAV Technology Platform by REGENXBIO
6.1.6 TRACER System for Discovering Novel Gene Therapy Capsids by Voyager Therapeutics
6.2 Plasmid DNA Technologies for In Vivo Expression of Antibodies
6.2.1 Ciliary Electrotransfection & DNA Plasmids by Evensys
6.2.2 Non-viral Antibody Gene Therapy (AGT) Platform by Generation Bio
6.2.3 Synthetic DNA-based Monoclonal Antibody (dMAb) Tecnology Platform by Inovio Pharmaceuticals
6.2.4 Gene-Encoded Antibody (Gene MAb) Technology by SmartPharm Therapeutics
6.3 mRNA Technologies for In Vivo Expression of Antibodies
6.3.1 RiboMAb Technology by BioNTech
6.3.2 RNAoptimizer Technology Platform by Curevac
6.3.3 SNIM RNA Technology by Ethris
6.3.4 mRNA Antibodies & Lipid Nanoparticles for Delivery by Moderna Therapeutics

7 Analysis of Pipeline and Product Candidates for In Vivo Expression of Antibodies
7.1 AAV DNA for In Vivo Expression of Antibodies: Analysis of Pipeline and Selected Product Candidates
7.2 Plasmid DNA for In Vivo Expression of Antibodies: Analysis of Pipeline and Selected Product Candidates
7.3 mRNA for In Vivo Expression of Antibodies: Analysis of Pipeline and Selected Product Candidates

8 Profiles of Vectorized Antibody Product Candidates
8.1 Viral Vector DNA Product Candidates for In Vivo Expression of Antibodies
8.1.1 4D-150
8.1.2 ADVM-022; AAV.7m8-aflibercept
8.1.3 Anti-Tau Vectorized Antibodies
8.1.4 INT41
8.1.5 RGX-314
8.1.6 Vectorized Anti-Kallikrein Antibody
8.2 Plasmid DNA Product Candidates for In Vivo Expression of Antibodies
8.2.1 Antibody Gene Therapy (AGT) - Generation Bio
8.2.2 Anti-VEGF ceDNA-ctLNP
8.2.3 Further dMAb Experience
8.2.4 EYS606
8.2.5 INO-A002; dMAb-ZK190; Zika dMAb
8.2.6 STI-8472: COVI-GeneMAB
8.3 mRNA Product Candidates for In Vivo Expression of Antibodies
8.3.1 CureVac mRNA Antibodies
8.3.2 mRNA-1944
8.3.3 ETH46; NI007

9 Business, Financing & Partnering
9.1 Business
9.2 Financing
9.3 Partnering

10 References

For more information about this report visit https://www.researchandmarkets.com/r/vrdoxl

CONTACT: CONTACT: ResearchAndMarkets.com Laura Wood, Senior Press Manager press@researchandmarkets.com For E.S.T Office Hours Call 1-917-300-0470 For U.S./CAN Toll Free Call 1-800-526-8630 For GMT Office Hours Call +353-1-416-8900